summarization.pagerank_weighted
– Weighted PageRank algorithm¶
This module calculate PageRank 1 based on wordgraph.
Examples
Calculate Pagerank for words
>>> from gensim.summarization.keywords import get_graph
>>> from gensim.summarization.pagerank_weighted import pagerank_weighted
>>> graph = get_graph("The road to hell is paved with good intentions.")
>>> # result will looks like {'good': 0.70432858653171504, 'hell': 0.051128871128006126, ...}
>>> result = pagerank_weighted(graph)
Build matrix from graph
>>> from gensim.summarization.pagerank_weighted import build_adjacency_matrix
>>> build_adjacency_matrix(graph).todense()
matrix([[ 0., 0., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0.]])
-
gensim.summarization.pagerank_weighted.
build_adjacency_matrix
(graph, coeff=1)¶ Get matrix representation of given graph.
- Parameters
graph (
Graph
) – Given graph.coeff (float) – Matrix values coefficient, optonal.
- Returns
Adjacency matrix of given graph, n is number of nodes.
- Return type
scipy.sparse.csr_matrix
, shape = [n, n]
-
gensim.summarization.pagerank_weighted.
build_probability_matrix
(graph, coeff=1.0)¶ Get square matrix of shape (n, n), where n is number of nodes of the given graph.
- Parameters
graph (
Graph
) – Given graph.coeff (float) – Matrix values coefficient, optonal.
- Returns
Eigenvector of matrix a, n is number of nodes of graph.
- Return type
numpy.ndarray, shape = [n, n]
-
gensim.summarization.pagerank_weighted.
pagerank_weighted
(graph, damping=0.85)¶ Get dictionary of graph nodes and its ranks.
- Parameters
graph (
Graph
) – Given graph.damping (float) – Damping parameter, optional
- Returns
Nodes of graph as keys, its ranks as values.
- Return type
dict
-
gensim.summarization.pagerank_weighted.
principal_eigenvector
(a)¶ Get eigenvector of square matrix a.
- Parameters
a (numpy.ndarray, shape = [n, n]) – Given matrix.
- Returns
Eigenvector of matrix a.
- Return type
numpy.ndarray, shape = [n, ]
-
gensim.summarization.pagerank_weighted.
process_results
(graph, vec)¶ Get graph nodes and corresponding absolute values of provided eigenvector. This function is helper for
pagerank_weighted()
- Parameters
graph (
Graph
) – Given graph.vec (numpy.ndarray, shape = [n, ]) – Given eigenvector, n is number of nodes of graph.
- Returns
Graph nodes as keys, corresponding elements of eigenvector as values.
- Return type
dict