models.lda_worker
– Worker for distributed LDA¶
Worker (“slave”) process used in computing distributed Latent Dirichlet Allocation
(LDA, LdaModel
).
Run this script on every node in your cluster. If you wish, you may even run it multiple times on a single machine, to make better use of multiple cores (just beware that memory footprint increases accordingly).
How to use distributed LdaModel
¶
Install needed dependencies (Pyro4)
pip install gensim[distributed]
Setup serialization (on each machine)
export PYRO_SERIALIZERS_ACCEPTED=pickle export PYRO_SERIALIZER=pickle
Run nameserver
python -m Pyro4.naming -n 0.0.0.0 &
Run workers (on each machine)
python -m gensim.models.lda_worker &
Run dispatcher
python -m gensim.models.lda_dispatcher &
Run
LdaModel
in distributed mode :
>>> from gensim.test.utils import common_corpus, common_dictionary
>>> from gensim.models import LdaModel
>>>
>>> model = LdaModel(common_corpus, id2word=common_dictionary, distributed=True)
Command line arguments¶
...
optional arguments:
-h, --help show this help message and exit
--host HOST Nameserver hostname (default: None)
--port PORT Nameserver port (default: None)
--no-broadcast Disable broadcast (default: True)
--hmac HMAC Nameserver hmac key (default: None)
-v, --verbose Verbose flag
-
class
gensim.models.lda_worker.
Worker
¶ Used as a Pyro4 class with exposed methods.
Exposes every non-private method and property of the class automatically to be available for remote access.
Partly initialize the model.
-
exit
()¶ Terminate the worker.
-
getstate
()¶ Log and get the LDA model’s current state.
- Returns
result – The current state.
- Return type
-
initialize
(myid, dispatcher, **model_params)¶ Fully initialize the worker.
- Parameters
myid (int) – An ID number used to identify this worker in the dispatcher object.
dispatcher (
Dispatcher
) – The dispatcher responsible for scheduling this worker.**model_params – Keyword parameters to initialize the inner LDA model,see
LdaModel
.
-
ping
()¶ Test the connectivity with Worker.
-
processjob
(job)¶ Incrementally process the job and potentially logs progress.
- Parameters
job (iterable of list of (int, float)) – Corpus in BoW format.
-
requestjob
()¶ Request jobs from the dispatcher, in a perpetual loop until
gensim.models.lda_worker.Worker.getstate()
is called.- Raises
RuntimeError – If self.model is None (i.e. worker non initialized).
-