similarities.annoy – Approximate Vector Search using Annoy

This module integrates Spotify’s Annoy (Approximate Nearest Neighbors Oh Yeah) library with Gensim’s Word2Vec, Doc2Vec, FastText and KeyedVectors word embeddings.

Important

To use this module, you must have the annoy library installed. To install it, run pip install annoy.

class gensim.similarities.annoy.AnnoyIndexer(model=None, num_trees=None)

This class allows the use of Annoy for fast (approximate) vector retrieval in most_similar() calls of Word2Vec, Doc2Vec, FastText and Word2VecKeyedVectors models.

Parameters
  • model (trained model, optional) – Use vectors from this model as the source for the index.

  • num_trees (int, optional) – Number of trees for Annoy indexer.

Examples

>>> from gensim.similarities.annoy import AnnoyIndexer
>>> from gensim.models import Word2Vec
>>>
>>> sentences = [['cute', 'cat', 'say', 'meow'], ['cute', 'dog', 'say', 'woof']]
>>> model = Word2Vec(sentences, min_count=1, seed=1)
>>>
>>> indexer = AnnoyIndexer(model, 2)
>>> model.most_similar("cat", topn=2, indexer=indexer)
[('cat', 1.0), ('dog', 0.32011348009109497)]
build_from_doc2vec()

Build an Annoy index using document vectors from a Doc2Vec model.

build_from_keyedvectors()

Build an Annoy index using word vectors from a KeyedVectors model.

build_from_word2vec()

Build an Annoy index using word vectors from a Word2Vec model.

load(fname)

Load an AnnoyIndexer instance from disk.

Parameters

fname (str) – The path as previously used by save().

Examples

>>> from gensim.similarities.index import AnnoyIndexer
>>> from gensim.models import Word2Vec
>>> from tempfile import mkstemp
>>>
>>> sentences = [['cute', 'cat', 'say', 'meow'], ['cute', 'dog', 'say', 'woof']]
>>> model = Word2Vec(sentences, min_count=1, seed=1, iter=10)
>>>
>>> indexer = AnnoyIndexer(model, 2)
>>> _, temp_fn = mkstemp()
>>> indexer.save(temp_fn)
>>>
>>> new_indexer = AnnoyIndexer()
>>> new_indexer.load(temp_fn)
>>> new_indexer.model = model
most_similar(vector, num_neighbors)

Find num_neighbors most similar items.

Parameters
  • vector (numpy.array) – Vector for word/document.

  • num_neighbors (int) – Number of most similar items

Returns

List of most similar items in format [(item, cosine_distance), … ]

Return type

list of (str, float)

save(fname, protocol=2)

Save AnnoyIndexer instance to disk.

Parameters
  • fname (str) – Path to output file, will produce 2 files: fname - parameters and fname.d - AnnoyIndex.

  • protocol (int, optional) – Protocol for pickle.

Notes

This method saves only the index. The trained model isn’t preserved.